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We prove the local inequality A � 8�jJj, where A and J are the area and angular momentum of any

axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this

theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat

maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we

prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric

black holes.
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Introduction.—Black holes in equilibrium are character-
ized by two parameters that can be chosen to be the area A
(the ‘‘size’’ of the black hole) and the angular momentum
J. Moreover, these Kerr black holes satisfy the well known
lower bound A � 8�jJj. Fixing jJj � 0, then the smallest
black hole satisfies A ¼ 8�jJj and is called extreme. In the
realm of dynamical black holes, quantities like the quasi-
local angular momentum, do not have at the moment a
clear parallel. However, axially symmetric black holes
form a relevant class of dynamical black holes for which
the quasilocal angular momentum is, via Komar’s formula,
well defined. Based on heuristic physical arguments, it has
been conjectured in [1] that the same lower bound A �
8�jJj indeed holds for dynamical axially symmetric black
holes. Interesting physical consequences on the evolution
were discussed in [1]. In [2,3] the bound was proved
under several restrictive assumptions and in the stationary
case with matter and charge, it has been proved in [4].
Numerical evidence was given in [5]. The purpose of this
Letter is to present a general proof of this inequality for
axially symmetric black holes. Precisely, we extend the
validity of the inequality from the unique stationary Kerr
black hole to all dynamical, in principle even very far from
equilibrium, dynamical axially symmetric vacuum black
holes in the maximal gauge. The proof provides also new
connections between black holes and stable minimal
surfaces.

In order to describe the results we need to introduce
some definitions. An initial data set of the Einstein vacuum
equations, with cosmological constant �, consists in a
Riemannian three-manifold S (possible with boundary),
together with its first and second fundamental forms, hij
and Kij respectively, satisfying the constraints equations

Rþ K2 � KijK
ij ¼ 2�; riKij �rjK ¼ 0: (1)

In these equations, K ¼ hijKij and R denotes the scalar

curvature of hij. Initial data are called maximal if K ¼ 0.

The data are axially symmetric if there exists a vector field
with closed orbits �i such that

L �hij ¼ 0; L�Kij ¼ 0; (2)

where L denotes the Lie derivative.
For axially symmetric data the angular momentum J

associated to an arbitrary oriented closed surface � in S is
defined by the surface integral

Jð�Þ ¼
Z
�
�ij�

injdS�; (3)

where �ij ¼ Kij � Khij and ni, dS� are, respectively, the

unit normal vector and the area element of �. Note that J
represents the angular momentum intrinsic to the surface�
and it depends only on the homology class of �. It co-
incides with the total angular momentum of an asymptoti-
cally flat end when the surface � is homologous to an
sphere at infinity.
For axially symmetric data there exist two relevant

scalars determined by the Killing field: the square of its
norm � ¼ �i�jhij and the twist potential !, which can be

computed in terms of second fundamental form as follows
(see [6] for details). Define the vectors Si and Ki by

Si ¼ Kij�
j � ��1�iKjk�

j�k; Ki ¼ �ijkS
j�k; (4)

where �ijk is the volume element. Then, the momentum

constraint implies that the vector Ki is locally a gradient

Ki ¼ 1

2
ri!: (5)

The twist potential ! evaluated at a surface � determines
its angular momentum (see [2]).
We denote by �AB and �AB the intrinsic metric and the

second fundamental form of a surface �. The surface is
called minimal if its mean curvature (i.e. � ¼ �AB�AB)
vanishes. A minimal surface is called stable if it is a local
minimum of the area. A surface is axially symmetric if the
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Killing field �i is tangent to it. For axially symmetric
surfaces, we have (outside the axis) a canonical adapted
triad defined by (ni, �i, �i), where ni is the unit normal
vector to � and �i is an unit vector tangent to the surface
and orthogonal to �i.

The local geometry near the horizon of an extreme Kerr
black hole plays an important role as limit case in our
result. This geometry is characterized by the concept of an
extreme Kerr throat sphere, with angular momentum J,
defined as follows (see [1]). The sphere is embedded in an
initial data with intrinsic metric given by

�0 ¼ 4J2e��0d�2 þ e�0 sin2�d	2; (6)

where

�0 ¼ lnð4jJjÞ � lnð1þ cos2�Þ: (7)

Moreover, the sphere must be totally geodesic (i.e.,
�AB ¼ 0), the twist potential evaluated at the surface
must be given by

!0 ¼ � 8J cos�

1þ cos2�
; (8)

and the components of the second fundamental

Kij�
i ¼ Kijn

jni ¼ Kij�
j�i ¼ 0; (9)

must vanish at the surface.
The following is the main result of this article.
Theorem 1.—Consider an axisymmetric, vacuum and

maximal initial data, with a non-negative cosmological
constant. Assume that the initial data contain an orientable
closed stable minimal axially symmetric surface �. Then

A � 8�jJj; (10)

where A is the area and J the angular momentum of �.
Moreover, if the equality in (10) holds then � ¼ 0 and the
local geometry of the surface � is an extreme Kerr throat
sphere.

Theorem 1 has a remarkable consequence. Namely,
for every orientable and closed surface � in a (complete)
axisymmetric datum with several asymptotically flat ends
the inequality (10) holds. It is, in particular, satisfied by
the event or marginal horizon of an axially symmetric
black hole. This proves the conjecture raised in [1]. We
will briefly outline this phenomenon. Further details will
appear elsewhere. For such class of manifolds, it follows
from a general result [7], that for every closed surface �
there exist a finite set of possibly repeated stable minimal
surfaces f�ig, such the sum of its areas is equal to the
infimum of the areas among all the isotopic variations of�.
Furthermore, because [�i is the measure theoretical
limit of isotopies of � ([7]), it is deduced that jJð�Þj �P jJð�o

i Þj were �o
i are those �i’s that are orientable.

Finally it is shown that, in our setting, each each �o
i

must be an axially symmetric sphere. Theorem 1 applies
for each �i and the claim follows.

Proof.—We first observe that if J � 0 then the surface�
is diffeomorphic to S2. This follows from a classical result
of [8] since the integral of the scalar curvature is strictly
positive on �. Let Ft:R� S2 ! S be a flow of surfaces
parametrized by t 2 R, such that Fjt¼0ðS2Þ ¼ �. We im-
pose that the family satisfies the equation _Fijt¼0 ¼ 
ni,
where dot denotes derivatives with respect to t, ni is the
unit normal to � and 
 is an arbitrary function on � that
will be fixed later on. As before, �AB and �AB denote the
intrinsic metrics and the second fundamental forms of
the surfaces FtðS2Þ.
The derivative of the mean curvature along the flow F is

given by

_� ¼ ���
� ð�AB�
AB þ Rijn

injÞ
; (11)

where �� is the Laplacian with respect to �AB.
We use the relation

R� ¼ R� 2Rijn
inj þ �2 � �AB�

AB; (12)

to write Rijn
inj in terms of R� (the scalar curvature of �AB)

in Eq. (11). We obtain

_� ¼ ���
� 1
2ðR� R� þ �2 þ �AB�

ABÞ
: (13)

For a minimal surface � ¼ 0 and the stability condition on
� implies that

€Ajt¼0 ¼
Z


 _�dS� � 0; (14)

where dS� is the area element with respect to �AB.
We multiply Eq. (13) by 
, integrate it over � and use

condition (14) to obtain

Z �
jD
j2 þ 1

2
R�


2

�
dS� � 1

2

Z
ðRþ �AB�

ABÞ
2dS�:

(15)

Note that only derivatives intrinsic to � appear on the left
hand side of this inequality.
By assumption, the surface � is axially symmetric,

therefore it intersects the axis of symmetry at two points,
which we define to be the poles of �. A general axially
symmetric metric on S2 can be written in the form

� ¼ e�½e2qd�2 þ sin2�d	2�; (16)

where �, q are regular functions of �. The coordinates
(�,	) cover the sphere � 2 ½0; ��,	 2 ½0; 2�Þ. The poles
are given by � ¼ 0, �. The axial Killing vector is given by
@	 and the square of its norm is given by

� ¼ e�sin2�: (17)

In these coordinates the determinant of the metric and the
scalar curvature are given, respectively, by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detð�Þ

q
¼ e�þq sin�; (18)
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R� ¼ e���2q

sin�
½2q0 cos�þ sin��0q0 þ 2 sin�� ðsin��0Þ0�;

(19)

where prime denotes derivative with respect to �.

Wewant to find a change of coordinates ~�ð�Þ such that in
the new coordinates the metric has the same form, namely

� ¼ e~�½e2~qðd~�2Þ þ sin2 ~�d	2�: (20)

and such that

~�þ ~q ¼ c; (21)

where c is a constant. Comparing (16) with (20) we obtain
the following relations

e�sin2� ¼ e~�sin2 ~�; e�=2þq ¼ e ~�=2þ~q ~�0: (22)

Using these equations and the condition (21) we obtain

~� 0 sin~� ¼ e�cþ�þq sin�: (23)

This equation can be integrated to obtain

cos~�� 1 ¼ �e�c
Z �

0
e�þq sin ��d ��: (24)

Where we have fixed the integration constant with the

condition ~�ð0Þ ¼ 0. The constant c is fixed with the

condition ~�ð�Þ ¼ �. Using cos½~�ð�Þ� ¼ �1, from (24)
we obtain

ec ¼ 1

2

Z �

0
e�þq sin ��d ��: (25)

The constant c is related to the area of the surface � by

A ¼
Z

dS� ¼ 2�
Z �

0
e�þq sin�d� ¼ 4�ec: (26)

Note also that dS� ¼ ecdS0, where dS0 ¼ sin~�d~�d	 is
the area element of the standard metric in S2.

The regularity conditions on the metric at the axis imply

that ~qð~� ¼ 0; �Þ ¼ 0. Hence, by Eq. (21), in these coor-
dinates we have

~�ð~� ¼ 0Þ ¼ ~�ð~� ¼ �Þ: (27)

From now on, we assume that this coordinate system is
used and we denote the functions and the coordinates
without the tilde.

The key step in the proof is to chose the lapse function 

to be


 ¼ ec��=2: (28)

Using this choice of 
 we can explicitly calculate the left
hand side of inequality (15)

Z �
jD
j2 þ 1

2
R�


2

�
dS�

¼ ec
�
4�ðcþ 1Þ �

Z �
�þ 1

4
�02

�
dS0

�
; (29)

where we have used the expression (19) for R�, the con-
dition (21) and the boundary condition (27). For the right
hand side of (15) we use the Hamiltonian constraint (1) and
the hypothesis that the data are maximal to write the scalar
curvature as

R ¼ KijK
ij þ�: (30)

Using the adapted triad (ni, �i, �i), we write KijK
ij as the

following sum of positive terms

KijK
ij ¼ ðKijn

injÞ2 þ ðKij�
i�jÞ2 þ ��2ðKij�

i�jÞ2
þ 2ðKij�

injÞ2 þ 2��1ðKij�
injÞ2

þ 2��1ðKij�
i�jÞ2 (31)

In [6], Eq. 42, it has been proved that

ðKij�
injÞ2 ¼ 1

4

!02

�
e���2q: (32)

Collecting these inequalities and discarding all the posi-
tive terms we obtain 8ðcþ 1Þ � M, where the important
mass functional M (see [1]) is defined by

M ¼ 1

2�

Z �
�02 þ 4�þ!02

�2

�
dS0: (33)

Using the relation between c and the area we finally obtain
our main inequality

A � 4�eðM�8Þ=8: (34)

Inequality (10) follows from the bound

2jJj � eðM�8Þ=8 (35)

proved in lemma 4.1 in [2] for all �,! such that! satisfies
the boundary condition !ð0Þ ¼ �!ð�Þ ¼ 4J which en-
sures that � has angular momentum J. Note that Lemma
4.1 in [2] has a larger scope (not used or required here) as it
applies to the extension of the functional (33) to nonax-
isymmetric functions (�, !).
It remains to prove the rigidity statement. We will prove

that, if equality in (35) holds, then � ¼ �0 and ! ¼ !0,
where �0 and !0 are given by (7) and (8). Having proved
this, rigidity follows imposing 8�ðcþ 1Þ ¼ M, and, us-
ing Eq. (31) in the now equality (15), track down all the
null terms.
The strategy to prove rigidity is the following. If equality

in (35) is achieved for the pair (�, !) then, being a
minimum of M, it must be a solution of the Euler-
Lagrange equations of M. Interestingly, a solution of the
Euler-Lagrange equations of M is also a solution of the
Euler-Lagrange equations of the functional
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~M � ¼
Z ���

�

�02 þ!02

�2
sin�d�; (36)

under smooth variations of compact support in (�, �� �)
for every �

2 > �> 0 (see [2] for further discussions).

Where � is given in terms of � by (17). Further, making
the change of variables �s ¼ lntan�=2 we have

~M � ¼
Z lntanð���Þ=2

lntan�=2

�02 þ!02

�2
d�s; (37)

where prime in this equation denotes derivative with re-
spect to �s. It is well known that a critical point of this
functional (for every � and under variations of compact
support), namely, solutions of its Euler-Lagrange equa-
tions, are geodesics in the hyperbolic plane H2. Here we
are identifying the hyperbolic plane to the half plane
R2þ ¼ fð�;!Þ=� > 0g together with the (hyperbolic
metric) ðd�2 þ d!2Þ��2. The geodesics are parametrized
by �swhere �s and the arc length are related by s ¼ c1 �sþ c2,
where c1, c2 are constants. Thus, the pair [�ð�Þ, !ð�Þ]
representing our minimizing solution will be a geodesic
�½�sð�Þ� in the hyperbolic plane. Now, geodesics of H2, are
either half circles or half lines perpendicular to the axis
f� ¼ 0g. The boundary condition!ð0Þ ¼ �!ð�Þ ¼ 4J on
! fixes the geodesic to be a centered half circle with radius
fixed by the angular momentum and equal to 4jJj. The only
freedom left is thus that of the parametrization. This free-
dom, as shown below, is fixed using (27). The solution
found in this way will be unique and extreme Kerr.

Following the line of reasoning described, we will com-
pute explicitly the solution using a complex expression for
geodesics in the hyperbolic plane. In complex notation
� ¼ !þ i�, it is � ¼ aesiþb

cesiþd . One has (suppose a=c > 0

but the analysis is the same otherwise) 4jJj ¼ !ð�Þ ¼ a=c
and �4jJj ¼ !ð0Þ ¼ b=d (note c � 0 and d � 0). Thus

� ¼ Imð�Þ ¼ cdðac � b
dÞes

c2e2s þ d2
¼ 8ðcdÞjJjes

ðcdÞ2e2s þ 1
: (38)

To find the general solution in terms of �we need to find c1
using the Euler-Lagrange equations of (36)�

!0 sin�
�2

�0 ¼ 0;

�
sin�

�0

�

�0 þ!02

�2
sin� ¼ 0: (39)

The first equation implies !0 ¼ �0
�2

sin2�
, where �0 is a

constant and therefore ð!0
� Þ2 ¼ �2

0ð �
sin�Þ2. Inserting !0 into

the second equation, multiplying it by ð�0 sin�Þ��1 and,
finally, integrating it in �, brings us to the identity

sin2�ð�0=�Þ2 þ �2
0�

2 ¼ �1, where �1 is a constant. From

this identity, the expression �0=� ¼ �0 þ 2 cos�
sin� and the

fact that � is bounded at the poles we deduce that
�1 ¼ 4. Thus ð�02 þ!02Þ��2 ¼ 4sin�2�. It follows that
c1 ¼ 2 and s ¼ c2 þ lntan2 �

2 . The general solution of � is

found making c
d e

c2 ¼ � in (38), explicitly

� ¼ ln4jJj þ ln
2�tan2 �

2

�2tan2 �
2 þ 1

; � > 0: (40)

The condition �ð0Þ ¼ �ð�Þ implies � ¼ 1. In this case
a trigonometric manipulation shows that � ¼ ln4jJj �
ln1þ cos2� which is the expression for � of extreme Kerr.
Final remarks.—As shown in [9], any axially symmetric

sphere has an adapted coordinate system as required in [2]
to deduce inequality (10). It may seem thus, that part of
Theorem 1 could be derived from [2] without further
elaborations. In fact, the condition _� � 0 in [2] can be
replaced by

R

 _�dS0 � 0, which is similar to (14) but has

different area element. It is not clear a priori how these
two integral inequalities can be reciprocally implied. Our
approach avoids the use of special coordinates.
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